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General conformal mapping and some torsion 
problems in comples plane 

R.T. Matoog 
 

Abstract— In this paper, we obtain the complex torsion functions for the cross section bounded by closed contour Γ  in z- plane.   The cross section is confor-
mally mapped on the area inside the unit circle γ  in ζ - plane by the rational mapping 21

1
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n
Z c αζ δζζ

βζ
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+

.Also, the torsional rigidity of the cylinder is de-

termined. Many special cases are established and discussed from the work. The most of the author’s works in this domain are considered as special case of this 
work. 
Keywords and phrases: Complex torsion function- Complex plane- Conformal mapping- Torsional rigidity. 
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1 INTRODUCTION                                                                     
or many years contact and mixed problems, in the theory of 
elasticity, has been recognized as a rich and challenging  
subjected for study, see [1-4]. In addition, many different  

methods are established for solving the contact and mixed  
problems in elastic and thermo elastic problems. The books  
edited  by Node et al.[5],Love [6], Popov [7], Aleksandrov 
 et al.[8] and Parkus [9] contain many different methods to solve the 
contact problems, mixed problems and the problems of the  
complex plane in the theory of elasticity. These problems can   
establish from the initial value problems, the boundary value  
problems. More information for the elastic problems can be  
found in the work of Hetnarski et al. [10], Exadaktylos et al. [11, 12] 
and Abdou et al. [13, 14]. 
   A very important problem in mathematical physics is the  
two-dimensional Dirichlet's problem for a simple closed  
curve. One of the situation from which it arisen is the classical 
Saint-Venant  torsion problem of a homogeneous right cylinder of  
length l with lateral surface free of external load, when a  
twisting motion is applied to the bases of the beam which is 
 subected to the stress. The calculation of these stresses is  
 called the torsion problem. The stresses can cause  
deformations and potential failure of the beam and therefore the 
solution to  the torsion problem is important in practice.  

There are two common approaches to doing these  
calculations:  numerical techniques that calculate approximate so-

lutions and analytic techniques that lead to exact solution.  
Analytic solutions, when it can be determined, are often 
 preferable because it exact and can usually be calculatedquickly.  
Several authors used various methods, to obtain the solution of 

the torsion problems in exact and closed forms. Some of authors 
used Laurent’s theorem to express the solution as a power 
 series, see Parkus [9] and Exadaktylos et al. [11, 12]. Others used 
complex variables method to obtain the solution of torsion prob-
lems in the form of two complex functions, see Muskhelishvili [15] 
and Abdou et al. [16-18]. 

In this paper, complex variable method is used to obtain 

closed, exact expressions for a homogeneous isotropic cylindrical 
bar using general conformal mapping. The stress functions,  

and the torsional rigidities and numerical values are calculated in 
some cases. Several figures are sketched showing the shapes of 
cross sections corresponding to special values of the parameters 
involved.  

2 BASIC EQUATIONS: 
Consider a homogeneous isotropic cylindrical bar, subject to no 
body forces and whose cross section in the xy- plane is bounded by 
a simple closed curveΓ , the generators of the bar are then parallel 
to z- axis. 

It is known that, see Muskhelishvili [15], the complex torsion 
function, is given by 

( ) ( , ) ( , );z x y i x y z x iyΩ = Φ + Ψ = +                                            (1) 
Where, the harmonic function ( , )x yΨ  satisfies the boundary condi-
tions 

1( , ) ( ) ( ), tan ;
2

ix y Z Z acons t on e ψζ ζ ζ ρ
−

Ψ = + Γ =                          (2) 

In terms of the variable ζ , the torsion function  ( )zΩ  takes the form 
11 ( ) ( )( ) ( ) ( .)

2
Z Zz W d a Cons

γ

σ σζ σ
π σ ζ

−
−

Ω = = +
−∫                                  (3) 

Where ( )W ζ  is analytic in the interior of the circle 1ζ = . 
he twisting couple N is given by 

, ( )N D D I Jτ µ= = +                                                                       (4) 
Where, τ  is the constant twist per unit length, µ  is the rigidity of the 
material of the bar, and D is the torsional rigidity of the cylinder. In addi-
tion,   I is the polar moment of inertia for the cross section, where 

2
1 1( ) '( ) ( ) ; ( ) ( ) '( )

4 2S

i iI z zdS Z Z Z d J Z Z W d
γ γ

σ σ σ σ σ σ σ σ
−− −

− −= = − =∫ ∫ ∫        (5) 

3 ELASTIC BAR WITH A UNIFORM CROSS SECTION 

Consider the cross section bounded by closed contour Γ  in z- plane, 
which is conformally mapped, on the area inside the unit circle γ  in 
ζ - plane by the rational mapping 

F 

———————————————— 
Ragaa T. Tatoog  is currently pursuing masters degree program in 
integral equations in applied sciences  in Umm Al– Qura University, E-
mail: rmatoog_777@yahoo.com  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                                        2062 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  
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m m

n
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= >
+

                                  (6) 

Here, m and n are positive integers; while , andα δ β  are real parame-
ters restricted such that '( )Z ζ  does not vanish or become infinite in-
side γ . The parametric equations of Γ are 

( ) ( ); ;
( ) ( )

x F y G
c H c H

ψ ψ
ψ ψ

= =                                                 (7) 

Where, 2( ) 1 2 cosH nψ β β ψ= + +  
and 

( ) cos cos( 1) cos( 1) cos(2 1)
cos( 1) cos(2 1) ;

( ) sin sin( 1) sin( 1) sin(2 1)
sin( 1) sin(2 1)

F n m m
m n m n

G n m m
m n m n

ψ ψ β ψ α ψ δ ψ
αβ ψ δβ ψ

ψ ψ β ψ α ψ δ ψ
αβ ψ δβ ψ

= + − + + + +
+ − + + − +

= − − + + + +
+ − + + − +

  

 
( .1: . , . ,

. , , , );    
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m n c
α δ

β
= = −

= = = =
15 03

08 3 1 1                             
( .2 : 1 / 7, 1 / 8,

1 / 15, 1, 5, );    
Fig

m n c
α δ

β
= =

= = = = 1  

 

 
 

( .3: 1 / 6, 1 / 5,
1 / 13, 3, 5, 1)

Fig
m n c

α δ
β

= − =
= = = =                           

( .4 : 0.2, . .2,
. .1, 1, 3, 1)

Fig
m n c
α δ

β
= = −

= = = =
0

0
 

 
 

 
      

( .5 : 0.09, . .02,
.01, 2, 1, 1)

Fig
m n c

α δ
β

= = −
= = = =

0
0                         

( .6 : 0.19, . .1,
. .1, 1, 5, 1)

Fig
m n c
α δ

β
= = −

= = = =
0

0
 

 
Figs. (1-6) contain some shapes for the parametric equations (7) for 
 different values  , , , .m and nα δ β  
To obtain the complex torsional function for certain curvilinear cross sec-
tion for the general conformal mapping (6), we must discuss thefollowing 
three cases: 
 
3.1   Case (I): ( 2 )n m>  
In this case, the complex torsion function is assumed in the form 

2
2 2

0 1 2 3 4 5( ) [ ]
1

m n n m m n m
n

c iW A A A A A Aζ ζ ζ ζ ζ ζ
βζ

− −= + + + + +
+

        (8) 

Where , 0,1,2,3,4,5iA i =  are real constant to be determined from (2) 
on γ . After determining iA ’s the formula (8) yields 

2
2 2 2 2

2

2 2

( ) [1 2 (1 ) (1 )
2(1 )(1 )

2 (1 ) 2 2 ]

m n
n

n m m n m

c iW ζ α δ α δ ζ β α δ ζ
β βζ

αβ δ ζ δζ δβζ− −

= + + + + − + +
− +

− + + −

        (9) 

Many special cases can be derived from case (a). For example 
●(I-1):Let, in (6), m=2, n=5, we have 

2 4

5

1 .
1

Z c αζ δζζ
βζ

+ +
=

+
                                                                      (10) 

The corresponding complex torsion function is 
2

2 2 2
2 5

3 4 2 2 5

( ) [1 2 2 (1 )
2(1 )(1 )

2 (1 ) 2 (1 ) ]

c iW ζ α δ δβζ α δ ζ
β βζ
αβ δ ζ δζ β α δ ζ

= + + − + +
− +

− + + − + +
            

 (11) 

●(I-2):Let in the conformal mapping (3.1) 0α = , to obtain the  
conformal mapping 

21 , ( 0)
1

m

n
Z c cδζζ

βζ
+

= >
+

                                                           (12) 

The corresponding complex torsion function takes the following 
form: 

2
2 2 2 2

2
( ) [1 (1 ) 2 2 ].

2(1 )(1 )
n m n m

n

c iW ζ δ β δ ζ δζ δβζ
β βζ

−= + − + + −
− +

    

●(I-3): Let in (6), 0δ = , to get the mapping 
1 , ( 0)
1

m

n
Z c cαζζ

βζ
+

= >
+

                                                       (13) 

 The corresponding complex function is 
2

2 2
2

( ) [1 2 (1 ) 2 ]
2(1 )(1 )

m n n m
n

c iW ζ α αζ β α ζ αβζ
β βζ

−= + + − + −
− +

 

●(I-4): Let in (7), 0β = , to obtain  
2(1 ), ( 0).m mZ c cζ αζ δζ= + + >                                                     (14) 

The complex torsion function takes the form: 
2

2 2 2( ) [1 2 (1 ) 2 ]
2

m mc iW ζ α δ α δ ζ δζ= + + + + +
 

Many special and different cases can be established and discussed 
from the conforming mapping (12),  (13) and (14) for the different 
values of , , , .m and nα δ β  

There are however two cases of particular interest. 
 
3.2 Case (II): ( );n m<  
In this case, the complex torsion function is assumed in the form: 

2 2

0

( )
1

m
s

sn
s

c iW Aζ ζ
βζ =

=
+ ∑        ( sA ’s are real constants)  (15)                                      

 
Using the boundary condition (2), then equating the coefficients of 
the term cos ;µψ  0,1,...,2mµ = , on both sides, we have (2m+1) equa-

tions are sufficient to determine the sA ’s. For example: for the con-

formal mapping 
 

3 6

2

1 , ( 0)
1

Z c cαζ δζζ
βζ

+ +
= >

+
                                         (16) 
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The corresponding complex torsion function is 
: 

2
2 2 2

2 2

2 2 2 2 2 3 3

( ) {1 2 2 (1 )(1 )
2(1 )(1 )

(1 2 ) 2(1 )[ ] }

c iW ζ α δ β δ αβ δ β ζ
β βζ

β α δ δβ ζ β α α δβζ δζ ζ

= + + − − + +
− +

+ + + − + − + − +

 

There are however two cases of particular interest. 
●(II-1):  When m n>  with a common integer factor i.e., 

; 1,2,3,..., . . .m pn p N i e= =  
 

21 , ( 2,3,..., ; 1,..., ; 0).
1

pn pn

n
Z c p N n M cαζ δζζ

βζ
+ +

= = = >
+

  (17) 

 
The corresponding complex torsion function is 
 

2 2

2
0

( ) [ ]; ;
(1 )

p
sn

s pn
s

c iW A Aζ ζ δ
βζ =

= =
+ ∑                      (18) 

where , 0,1,..2 1jA j p= − are unknown constants can be determined 

using Eqs.(2)-( 3)can be obtained in the form 
2 2

0 2

1 {1 2( ) [ ( ) ]},
2(1 )

p pA α δ β α αδ β δ
β

= + + + − + + −
−

 

1 2 2
1 2

1 {2( ) [ ( ) ] (1 )}
2(1 )

p pA β α αδ β δ β α δ
β

−= − + + − − + +
−

− − −
− − − − −

, 

2( ) [ ( ) ]; ( ) .p
p pA Aν ν
ν νβ α αδ β δ β δ− −= − + + − = −

 

 Where, the final form of the corresponding complex torsion func-
tion takes the form 

2

0 1 2( ) [ ];
(1 )

( 1,2,..., 1; 1).

p pn

c iW A A A A

p p

ν νζ
βζ

ν ν

− −= + + +
+

= − − ≠
    (19) 

Many special cases can be derived from this case 
 

●(II-1-a):   Let in (17), 0δ = , we have  
1 , ( 0; 2,..., )
1

pn

n
Z c c p Nαζζ

βζ
+

= > =
+

 

The corresponding complex torsion function yields 
2

2 2
2

2 2
2 2 2 2 2 2 (2 )

0

( ) {1 2( )
2(1 )(1 )

[1 2( 1) ] 2 (1 ) ( ) }

p
n

p
p p p n

c iW

ν ν

ν

ζ δ β δ
β βζ

β δ β δ ζ δ β β ζ
−

− −

=

= + + −
− +

− + + − + − −∑
 

●(II-1-b): Let in (17), 1p = , we have  
21 ; 0,1,2,...,

1

n n

n
Z c n Nαζ δζζ

βζ
+ +

= =
+

 

The corresponding complex torsion function becomes 
2

2 2
2

2 2 2 2

( ) {1 2 ( )
2(1 )(1 )

[2 (1 ) (1 2 )] 2(1 ) }
n

n

n

c iW ζ α δ β α αγ βδ
β βζ

α δ β α δ δ ζ β δζ

= + + − + −
− +

+ + − + + + + −

 

 
3.3  Case (II.2): ( m n> ) 

Let without common factor m n>  i. e., we always find an integer p 
such that ( 1) .p n m pn+ > >  
In such case, we assume the torsion function in the form 
 

2
( 1)

0 1 2

2
(2 1) 2 2

3
0 0

( ) [
(1 )

]

n p n m
n

p p
p n m m sn m sn

s s
s s

c iW A A A

A B B

ζ ζ ζ
βζ

ζ ζ ζ

+ −

+ − − −

= =

= + +
+

+ + +∑ ∑
 

The constants 0 1 2 3, 0 1 , 0 1 2, , , , ,..., , , ,...,p pA A A A B B B C C C are real and can be 

determined from the condition (2).  After obtaining the values of 
the constant, the torsion function is 

2
2 2

2

1
( 1) 2

0

2 1
2 2 (2 1) 2 2 2

0

( ) {(1 )(1 ) 2( ) (1 )
2(1 )(1 )

[ ] 2 (1 ) ( )

2( ) [ ] 2 (1 ) ( ) }

n p
n

p
m np p n m m n

p
p m np p n m m n

c iW

X ν ν

ν

ν ν

ν

ζ α δ βζ β α δ
β βζ

ζ βζ α β β ζ

β δ ζ βζ δ β β ζ

−
− + − −

=

−
− + − −

=

= + + − + − +
− +

− + − −

+ − − + − −

∑

∑ (20)

 

Many different special cases can be derived from (20), 
when ( 0; 0, 0)α δ β= ≠ ≠ ( 0, 0, 0);( 0, 0, 0),α δ β α δ β≠ = ≠ ≠ ≠ = and for 
different values of m and n. 

 
3.4  Case(III): (2 ; 3,..., ; 2,3,..., 1)m n m n N m N> > = = −  
 
In this case, the complex torsion function can be assumed in the 
form 

2
2 2 2 2

0 1 2 3 4 5 6( ) [ ]
(1 )

n n m m n m m m n
n

c iW A A A A A A Aζ ζ ζ ζ ζ ζ ζ
βζ

− − −= + + + + + +
+

 

After determining the constants 0A to 6A and inserting the results in 
the above, we have 

2
2 2

2

2 2 2 2 2 2

( ) {(1 )(1 )
2(1 )(1 )
2 [(1 ) ] 2 (1 )( }

n
n

m n m m n m n m

c iW ζ α δ βζ
β βζ

δ β ζ β ζ βζ α δ ζ βζ− − −

= + + −
− +

+ − + − + + −

 (21)  

4. TORSION RIGIDITY FOR SOME CROSS SECTION 

In this section, we will determine the torsion rigidity D for cross 

sections that can be mapped on the unit circle γ  by the rational 

mapping function 
31 ; 0

1

n

n
Z c cαζζ

βζ
+

= >
+

                                                      (22) 

With its corresponding complex torsion function 
2

2 3
2

2 2

( ) {1 2
2(1 )(1 )

(2 1) 2 (1 ) ( )}

n

n n n

icW ζ α αβ
β βζ

β αβ α ζ α β ζ ζ β

= + −
− +

+ − − + − −

                             (23) 

 
Using the first formula of (5), we obtain 
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4

3 3 2

4 1 3 2

3 4

( ) ;
4

(1 )( )( ) [1 ( 1)
(1 ) ( )

(3 1) (2 1) ]

n n
n

n n n

n n

icI G d

G n

n n

γ

σ σ

ασ α σσ β σ
σ βσ β σ
α σ αβ σ

+

−
=

+ +
= − −

+ +

+ + + +

∫

                    

(23) 

The integrand (23) has a pole of order (4n+1) at the origin, and n 

double poles at sλ ,s=1,2,…n where ; ( 1).n
sλ β β= − <  

Let sP  denotes the residue of the integrand at the points sλ and P 

denotes the residue at the origin, then we have 
4

1

[ ]
2

n

s
s

cI P Pπ
=

= +∑                                                                   (24) 

In order to get the residue P we expand the integrand ( )G σ  in 
power ofσ . Hence the coefficient of 1σ −  in the resulting expression 
is 

2 2 2 2 2 3
6

2 4 2 2 3 2 4

2 2 5 2 6 2 8

1 {5 4 ( 1) 2(2 3 2)

9 ( 1) 2 (2 2 4 ) 9 ( 1)
2 (2 2 4 ) 4 (2 3 ) 5 (1 2 ) }. (25)

P n n

n n n n
n n n n

α α β α α αβ
β

α β α α α β α β
α α α β α β α β

= + + − + +

+ + − + + + + +

− + + + + + + +

. 

 
For the residues, sP  we set s tσ ζ= + in the integrand (23) and ex-
pand the resulting in powers of t. After some algebraic work the 
coefficient of 1t − is found in the form 

3
2 2 3 5

6 2 4

2 3 3 6 3 3

2 4 3 2 7

( ) {(1 )[ 1 ( 1) (3 1) (2 1) ]
(1 )
( 2 5 8 ) ( )(1 )

[ 4 (10 3 ) 6( 1) (3 1)(1 4 ) 3(2 1) ]}

sP n n n
n

X
X n n n n

α β β β αβ αβ
β β

α α β β αβ α β αβ
β β αβ β αβ

−
= − − − − + + + +

−

+ + − + − −

− + − + − + + − + +

    (26) 

Inserting (25), (26) in (24), we have the polar moment of inertia in 
the final form 

4
2 4 2 2 4

2 4

3 2 4 2 4

5 2 2 6 7 2

2 8 2 10

{1 2 (2 3 ) (1 3 ) 2 (1 4 )
2(1 )

8 [2 3 2 (1 3 )] [(1 ) 2 (2 ) (1 2 )]
4 [ (6 13 ) 2(3 2 )] 14 (1 3 ) 4 [2 (2 )(1 2 )]
8 (3 7 ) 10 (1 2 )}. (27)

cI n n n

n n n n n
n n n n n

n n

π α α β α α
β

αβ α β α α
αβ α α β αβ α
α β α β

= + + + + + + +
−

− + + + − − + + + +

+ + + + + + − + +

− + + +

 

Introducing (4.1), (4.2) in the second formula of (2.5), we get 
 

4
2 3 2 2 2 3

2

3 3

1

( ){ ( 1 ) (1 )[2 (3 ) 2 ]} ;
2(1 )

(1 )( )( ) (28)
(1 )( )

n n n

n n

n n n

nc iJ h d

h

ν

σ β α αβ αβ α β βσ β σ βσ σ
β

ασ α σσ
σ βσ β σ+

= − − + + − − − − −
−

+ +
=

+ +

∫  

 
Inside ν , the integrand has simple poles at 

, 1,2,..., ; , 1n
s ss nλ λ β β= = − <  and pole of order (n+1) at the origin. 

Let Q  and sQ denote the residues at the origin and sλ , respectively. 
Then 

4

1

2 ( )
n

s
s

J c Q Qπ
=

= − +∑                                                   (29) 

Following the previous way of determining (27), (28),  
we have 

2 3 2 2 5{1 3 2 3 (1 ) 3 }Q α α αβ αβ β α αβ
β

= + − − + + −              (30) 

And 

3 3
2 3 5

2 3

(1 )( ) { 1 6 7 3 }
(1 )sQ

n
αβ α β α αβ αβ αβ
β β

− −
= − − + − +

−
           (31) 

Introducing (30), (31) in (29), we get   
4

2 2 2 2 2 3 2 4
2 4

2 5 2 6 2 7 2 8 2 10

{3 (1 ) 12(1 ) 3
(1 )
14(1 ) 12 6 (1 ) 14 6 }. (32)

ncJ π α α β α β α β
β
α β α β α α β α β α β

= − + + − + −
−

+ + + + + − +
 

(4.12)

 
The torsion rigidity D, is obtained in the final form 
 

4
2 4 4 4

2 4

2 2 2 3 3 2

5 2 2 6

7 2 2 8 2 9

{1 4 (1 3 ) [ 1 (2 1) ]
(1 )
4 8 (2 3 ) 2 (8 2 6 )

12 [2 ( 1) ( 2)] 2 (7 9 )
4 [ ( 2) 2(1 )] 4 (6 7 ) 2 (5 4 )}

cD n n n

n n
n n n

n n n n

πµ α α α β
β
α β α β αβ αβ β
αβ α α β

αβ α α β α β

= + + + + − − +
−

+ − + − − −

+ + − − + +

− + + − − + + + (33) 

Which is a parabolic function of n. 
As an important special case, for the epitrochoid cross sec-
tion, we let 0β = in (33) to get 

4
2 4{1 4 (3 1) }

2
cD nπµ α α= + + +                                  (34) 

In addition, let 3α β= , in (22), we get the following confor-
mal mapping 

2 2( ) (1 )n nZ cζ ζ βζ β ζ= − +                                            (35) 
The corresponding torsion rigidity to (35) is 

4
2 4 6 8{1 4 ( 9) 4( 1) (2 1) }

2
cD n n nπµ β β β β= + + + + + + +           (36) 

5. SHEARING STRESSES FOR SOME CROSS SEC-
TIONS: 
The Shearing stresses Zρ and Zψ  at any point of the cross section 
are given by, see [14] 

[ '( ) '( ) ( )]
'( )

Z i Z W iZ Z
Z
τµζρ ψ ζ ζ ζ
ζ

− = − −
                                     (37) 

Using the conformal mapping (22) and (23) in (37), we have 
2 3 2

2

2 2 2 2

3 4 3

{ [( 1 ) (1 )
(1 )

(2 (3 ) 2 )]( ) [1 (1 )

(3 1) (2 1) ](1 )(1 )}. (38)

n

n n n n n

n n n n

c i nZ i Z
T

X n

n n

µτρ ψ α αβ αβ βζ α β
ρ β

β β ζ βζ ζ ρ β ρ βζ

αζ αβζ αζ βζ

−− = − − + + − −
−

− − − + − + −

+ + + + + +

 

           

23 41 (1 ) (3 1) (2 1) 1n n n nT n n nβζ αζ αβζ βζ= + − + + + + +  
Putting 1,ρ =  in (38), then after considerable amount of algebraic 
work, we have: 
 

3

0
1 1 42

1/2

0

cos
( ) 0; ( ) ;

(1 ) [ cos ]

s
s

s
s

A sncZ Z
B sn

ρ ρ

ψµτρ ψ
β ψ

=
= =

=

= =
−

∑

∑
                  (39) 
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                             ( .8 : 1 / 7, 1 / 15,
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( .9 : 0.7, 0.1,
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                            ( .10 : 0.9, 0.01,

1 / 2, 3 / 7, 15, 1)
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= = −

= = = =
  

Figs. (7-10) 
Figs(7-10) describe the shear stress 1( )Z ρψ =

 for different  values of 
, , , , .and nα β τ µ  

6 CONCLUSION: 

From the above, we can deduce the following: 

(1) In the theory of elasticity, in two-dimensional torsion problems, 

one of the most useful techniques is using the conformal mapping in 

the complex plane. The conformal mapping transforms the region 

into a simpler shape to get the analytical solutions without difficul-

ties. Conformal mapping are widely used in plane linear elasticity 

because they help in transforming very complicated shapes into such 

simple one and allow the basic complex variable formation to extend 

to the transformation problem, thereby making the powerful me-

thods of solutions developed for circular and half- plane regions to be 

applicable to these problems 

 (2)  For the shearing stress Zψ , the number of (n) leads to the 

same number of harmonic for fixed n, see Figs. (7-10). 

(3) For fixed n and different values of α and β, the function depends 

on the comparison between α and β. For example, if α >> β, the top 

of harmonic are increasing.  
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